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Graphs

Definition
A graph is a pair G = (V, E), where V is a set whose elements are
called vertices and E is a set of paired vertices, whose elements are

called edges.
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Graphs

We will (mostly) consider cases where G:
e is finite
e hasnov e Vst deg(v)=0
e could have self-loops and parallel edges

e is not necessarily connected

e unweighted
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Adjacency matrix

Definition (Adjacency matrix)

Let G be a graph with vertices vq, vo,...,v,. Then the adjacency
matrix of G is the matrix A € Mat(n x n; {0,1}), whose (i, )
entry, denoted by [A];, is defined by

1 if v; and v; are adjacent,
[Alij = .
0 otherwise.
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A network analysis of Spotify [SRM’21]

e A network of all the artists on Spotify connected by who they
worked with

1,250,065 artists (vertices on undirected graph)

3,766,631 collaborations (edges on undirected graph)

Snowball sampling starting with Kanye West

Get metadata on these artists (eg popularity, etc)

Represent using adjacency matrix:

Kanye Drake Taylor

Kanye 1 1 0
A = Drake 1 1 0
Taylor 0 0 1
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Eigenvector centrality

e Calculate the eigenvector centrality: Av = \v
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Filter popularity 4+ eigenvector centrality

e Take the most popular contemporary artists
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Figure 1: Dominance shifts from classical music to rappers. 3
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When does it all change?

e Delete nodes with a popularity of 10 or less
e Nothing changes in critical region, but location of the
transition is shifted

e Even unpopular artists can change the structure of graph!
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Why? It’s all in the eigenvalues
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e The vectors representing classical dominance and rap
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Graph Laplacian

Definition (Laplacian matrix)

Define the degree matrix D € Mat(n x n; R) as

deg(v;), ifi=j
b, _ { dest), iti=]
0, otherwise.

The Laplacian matrix is then defined as L = D — A.

e Analogous to analytic definition of the Laplacian!

11
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A function on graphs

e Suppose a function f: V — R on G:

— could be voltage, temperature, 0/1 indicator for a subset
S CV, etc...

12
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A function on graphs

e Suppose a function f : V — R on G:

— could be voltage, temperature, 0/1 indicator for a subset
S CV, etc...

e ...then would have

f(vi)

e f acting on V behaves like R” and forms a vector space.

13
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Local variance

Definition (Local variance)

The local variance of f is defined as:
E(F) == Euny |(F(u) — F(v))?],

where u ~ v is a probability distribution over the edges.

14



Graphs & Matrices Functions on Graphs Some Linear Algebra Weird Applications Fin
00000000000 00008000000 000 0000000 o

Local variance

Definition (Local variance)

The local variance of f is defined as:
E(F) = Euny [(F(0) = F(v))?],

where u ~ v is a probability distribution over the edges.

= &(f) is “small” iff f is “smooth” over the edges.

ii5)
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Local variance

Definition (Local variance)

The local variance of f is defined as:
E(F) = Euny |(F(u) = F(1))?]

where u ~ v is a probability distribution over the edges.
= &(f) is “small” iff f is “smooth” over the edges.
Can immediately observe that:

e £(Ff)>0
o E(c-f)=c?-&(f)

o E(f +c) = &(F).
16
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Local variance: example

Let SC V and f = 1{v € S}.

17
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Local variance: example

Let SC Vand f = 1{v € S}.

The local variance is then
By [(1{ue S}~ 1{v e 5})2}

-Eyy [1{(u, v) “crosses” S}]

NIRLNIRDN| -

= — - {fraction of edges on 0S}

=Py {u — v is “stepping” out of S}.

18
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Random Vertices

e Procedure for choosing a random vertex:

e Choose u ~ v a random edge.
e Output u.

19
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Random Vertices

e Procedure for choosing a random vertex:
e Choose u ~ v a random edge.
e Output u.

e This stationary distribution on the vertices, 7, prioritises
vertices based on the number of adjacent edges (evenly spread
probability only in the case of regular graph).

P(u) = 1/10

P(v) = 1/2

P(n;) = const.

20
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Facts for the walk

e The probability of picking u, m(u), is proportional to deg(u).
(In fact it is w(u) = deg(u)/2|E|.)

e The process of picking u from 7 and then picking v as a
uniformly random neighbour of u is the same as drawing an

edge uniformly at random u ~ v.

o Let t € N. Pick u ~ 7. Now do a random walk starting at u
taking t steps. Then the distribution of v, the endpoint of the

walk, is 7. (7 is invariant.)

21
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The Spectral Theorem

We say that v is an eigenvector of M € Mat(n x n; R) with
eigenvalue X if Mv = \v.

Then X\ is an eigenvalue iff A\ — M is singular.

Theorem (Spectral Theorem)

If M is an n-by-n, real, symmetric matrix, then there exist real
numbers A1, ..., A\, and n mutually orthogonal unit vectors
v1,...,Vn and such that v; is an eigenvector of M of eigenvalue
A;, for each i.

22
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Proof Sketch: Induction

If n=1, then M = X and can pick any v # 0 as a basis for R.

Hypothesis. Every k-by-k matrix for k = 1,...,n — 1 satisfies the

spectral theorem.

Step.
e Obtain orthonormal basis B = vy, ..., v, for R” by choosing
A ER
o Use P= [vl v,,} to obtain a block form for A= PT MP

e Then show that 3 orthogonal R s.t. RT MR is diagonal via
induction hyp. = 3 orthonormal basis for R" consisting of

eigenvalues of M.

23
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Cover time of graph

Given, for graph G:

— Laplacian matrix L=D — A
— Eigenvalues 0 =X\ < A < ... <)\

— Eigenvectors vy, vy, ..., vy

Problem. Want to find how long it takes to cover G.

24
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Cover time of graph

Theorem (DLP’11)
Ifgi,...,&n ~iida N(0,1), then

2
gi .
n- E = .yl = cover time of G,

o0

up to o(1) error.

Figure 2: Gaussian free field induced by graph

25
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Unique games problems

Problem: Suppose you are given p prime and a family of 2-variate

linear equations over the variables xi, ..., X,:

X13 — X7 =4 (mod P

)
x4 —x7 =9 (mod p)
X7 — X120 = 1 (mod p)

)

X11 — X4 = 0 (mod 1%

If 99% of these equations are satisfiable, then can we find a

solution that works for 1% of these equations?

26
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Unique games problems

Conjecture (Khot'02). This problem is computationally
intractable.

The problem can be reduced to finding small clusters

corresponding to specific \.

27
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Unique games problems

Conjecture (Khot'02). This problem is computationally
intractable.

Theorem (LOGT’12)

For S C V, let p(S) = |E(S,S5°)|/d|S
expansion constant be

, and let the k-way

pc(k) = min max{¢g(Si):i=1,..., k}.

1459k

Then, for every graph G and every k € N,

Me/2 < pa(k) < O(K)V/ Ak

— Can always find small clusters! 28
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Nearly linear-time Laplacian solver

Problem: Solve the system Lx = b.

e Will be culmination of seminar!

e We can quickly compute the spectral object x [ST'04,
KMP’10, KOSZ'13]

e This in turn is useful for computing max flows and min cuts
on a graph [CKMST'11, LSR'13, Madry'13, etc]

29
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Sign up for talks!!!

Courant-Fischer, graph Laplacian
Random walk

Electronic network

Sampling spanning tree

Graph sparsifier

Cheeger inequality

Laplacian solver

N o &> ¥ P F

(Nearly) Linear-time Laplacian solver

29
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