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Graphs

Definition

A graph is a pair G = (V ,E ), where V is a set whose elements are

called vertices and E is a set of paired vertices, whose elements are

called edges.

2



Graphs & Matrices Functions on Graphs Some Linear Algebra Weird Applications Fin

Graphs

We will (mostly) consider cases where G :

� is finite

� has no v ∈ V s.t. deg(v) = 0

� could have self-loops and parallel edges

� is not necessarily connected

� unweighted
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Adjacency matrix

Definition (Adjacency matrix)

Let G be a graph with vertices v1, v2, . . . , vn. Then the adjacency

matrix of G is the matrix A ∈ Mat(n × n; {0, 1}), whose (i , j)

entry, denoted by [A]i ,j , is defined by

[A]i ,j =

1 if vi and vj are adjacent,

0 otherwise.
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A network analysis of Spotify [SRM’21]

� A network of all the artists on Spotify connected by who they

worked with

� 1,250,065 artists (vertices on undirected graph)

� 3,766,631 collaborations (edges on undirected graph)

� Snowball sampling starting with Kanye West

� Get metadata on these artists (eg popularity, etc)

� Represent using adjacency matrix:

A =


Kanye Drake Taylor

Kanye 1 1 0

Drake 1 1 0

Taylor 0 0 1
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Relative popularity
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Eigenvector centrality

� Calculate the eigenvector centrality : Av = λv
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Filter popularity + eigenvector centrality

� Take the most popular contemporary artists

Figure 1: Dominance shifts from classical music to rappers. 8
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When does it all change?

� Delete nodes with a popularity of 10 or less

� Nothing changes in critical region, but location of the

transition is shifted

� Even unpopular artists can change the structure of graph!
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Why? It’s all in the eigenvalues

� The vectors representing classical dominance and rap

dominance exist the entire time, but they change ranking:
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Graph Laplacian

Definition (Laplacian matrix)

Define the degree matrix D ∈ Mat(n × n;R) as

Di ,j =

deg(vi ), if i = j

0, otherwise.

The Laplacian matrix is then defined as L = D − A.

� Analogous to analytic definition of the Laplacian!
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A function on graphs

� Suppose a function f : V → R on G :

– could be voltage, temperature, 0/1 indicator for a subset

S ⊆ V , etc...
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A function on graphs

� Suppose a function f : V → R on G :

– could be voltage, temperature, 0/1 indicator for a subset

S ⊆ V , etc...

� ...then would have

f : V → R ≡


f (v1)

f (v2)
...

f (vn)


� f acting on V behaves like Rn and forms a vector space.

13



Graphs & Matrices Functions on Graphs Some Linear Algebra Weird Applications Fin

Local variance

Definition (Local variance)

The local variance of f is defined as:

E(f ) := Eu∼v

[
(f (u)− f (v))2

]
,

where u ∼ v is a probability distribution over the edges.
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Local variance

Definition (Local variance)

The local variance of f is defined as:

E(f ) := Eu∼v

[
(f (u)− f (v))2

]
,

where u ∼ v is a probability distribution over the edges.

=⇒ E(f ) is “small” iff f is “smooth” over the edges.

15



Graphs & Matrices Functions on Graphs Some Linear Algebra Weird Applications Fin

Local variance

Definition (Local variance)

The local variance of f is defined as:

E(f ) := Eu∼v

[
(f (u)− f (v))2

]
,

where u ∼ v is a probability distribution over the edges.

=⇒ E(f ) is “small” iff f is “smooth” over the edges.

Can immediately observe that:

� E(f ) ≥ 0

� E(c · f ) = c2 · E(f )
� E(f + c) = E(f ).
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Local variance: example

Let S ⊆ V and f = 1{v ∈ S}.
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Local variance: example

Let S ⊆ V and f = 1{v ∈ S}.

The local variance is then

E(f ) = 1

2
· Eu∼v

[
(1{u ∈ S} − 1{v ∈ S})2

]
=

1

2
· Eu∼v [1{(u, v) “crosses” S}]

=
1

2
· {fraction of edges on ∂S}

= Pu∼v{u → v is “stepping” out of S}.
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Random Vertices

� Procedure for choosing a random vertex:

� Choose u ∼ v a random edge.

� Output u.
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Random Vertices

� Procedure for choosing a random vertex:
� Choose u ∼ v a random edge.

� Output u.

� This stationary distribution on the vertices, π, prioritises

vertices based on the number of adjacent edges (evenly spread

probability only in the case of regular graph).

P(ni ) = const.

P(u) = 1/10

P(v) = 1/2
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Facts for the walk

� The probability of picking u, π(u), is proportional to deg(u).

(In fact it is π(u) = deg(u)/2|E |.)

� The process of picking u from π and then picking v as a

uniformly random neighbour of u is the same as drawing an

edge uniformly at random u ∼ v.

� Let t ∈ N. Pick u ∼ π. Now do a random walk starting at u

taking t steps. Then the distribution of v, the endpoint of the

walk, is π. (π is invariant.)
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The Spectral Theorem

We say that ν is an eigenvector of M ∈ Mat(n × n;R) with
eigenvalue λ if Mν = λν.

Then λ is an eigenvalue iff λI−M is singular.

Theorem (Spectral Theorem)

If M is an n-by-n, real, symmetric matrix, then there exist real

numbers λ1, . . . , λn and n mutually orthogonal unit vectors

ν1, . . . , νn and such that νi is an eigenvector of M of eigenvalue

λi , for each i .
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Proof Sketch: Induction

If n = 1, then M = λ and can pick any v ̸= 0 as a basis for R.

Hypothesis. Every k-by-k matrix for k = 1, . . . , n − 1 satisfies the

spectral theorem.

Step.

� Obtain orthonormal basis B = v1, . . . , vn for Rn by choosing

λ1 ∈ R
� Use P =

[
v1 . . . vn

]
to obtain a block form for A = P⊤MP

� Then show that ∃ orthogonal R s.t. R⊤MR is diagonal via

induction hyp. =⇒ ∃ orthonormal basis for Rn consisting of

eigenvalues of M.
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Cover time of graph

Given, for graph G :

– Laplacian matrix L = D − A

– Eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn

– Eigenvectors ν1, ν2, . . ., νn

Problem. Want to find how long it takes to cover G .
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Cover time of graph

Theorem (DLP’11)

If g1, . . . , gn ∼i.i.d. N (0, 1), then

n ·

∥∥∥∥∥
n∑

i=2

gi√
λi

· νi

∥∥∥∥∥
2

∞

≍ cover time of G ,

up to o(1) error.

Figure 2: Gaussian free field induced by graph 25
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Unique games problems

Problem: Suppose you are given p prime and a family of 2-variate

linear equations over the variables x1, . . . , xn:

x13 − x7 ≡ 4 (mod p)

x4 − x7 ≡ 9 (mod p)

x7 − x12 ≡ 1 (mod p)

x11 − x4 ≡ 0 (mod p)

...

If 99% of these equations are satisfiable, then can we find a

solution that works for 1% of these equations?
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Unique games problems

Conjecture (Khot’02). This problem is computationally

intractable.

The problem can be reduced to finding small clusters

corresponding to specific λ.
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Unique games problems

Conjecture (Khot’02). This problem is computationally

intractable.

Theorem (LOGT’12)

For S ⊆ V , let ϕG (S) = |E (S , Sc)|/d |S |, and let the k-way

expansion constant be

ρG (k) = min
S1,...,Sk

max{ϕG (Si ) : i = 1, . . . , k}.

Then, for every graph G and every k ∈ N,

λk/2 ≤ ρG (k) ≤ O(k2)
√
λk

=⇒ Can always find small clusters! 28
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Nearly linear-time Laplacian solver

Problem: Solve the system Lx = b.

� Will be culmination of seminar!

� We can quickly compute the spectral object x [ST’04,

KMP’10, KOSZ’13]

� This in turn is useful for computing max flows and min cuts

on a graph [CKMST’11, LSR’13, Madry’13, etc]
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Sign up for talks!!!

1. Courant-Fischer, graph Laplacian

2. Random walk

3. Electronic network

4. Sampling spanning tree

5. Graph sparsifier

6. Cheeger inequality

7. Laplacian solver

8. (Nearly) Linear-time Laplacian solver
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