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1 Recap

Let us start by recalling some of the things we introduced last week. First, one we all surely
remember:

Definition 1. A graph G = (V,E) is a pair of sets V and E where E ⊆ V × V . The elements of
V are called vertices and the elements of E are called edges.

We say that e = (u, v) ∈ E is an edge between u and v. We say that u and v are adjacent if
(u, v) ∈ E. We say that u and v are neighbours (or u ∼ v) if they are adjacent. Here’s a graph:

We will (mostly) consider cases where G is finite, has no isolated vertices (i.e. no v ∈ V s.t.
deg(v) = 0), could have self-loops and parallel edges, is not necessarily connected, and is unweighted.
However, from time to time we will consider graphs that do not satisfy some of these properties (this
doesn’t change things too much; we can deal with typical weights w by using parallel unweighted
edges).

We are very interested in the matricial representations of graphs. One of the most natural ones is
the adjacency matrix:

Definition 2 (Adjacency matrix). Let G be an unweighted graph with vertices v1, v2, . . . , vn. Then
the adjacency matrix of G is the matrix A ∈ Mat(n×n; {0, 1}), whose (i, j) entry, denoted by [A]i,j,
is defined by

[A]i,j =

{
1 if vi and vj are adjacent,

0 otherwise.

This is merely a spreadsheet of the graph. It is quite natural, but we will see that it is not the
most useful representation of a graph. Here’s a more useful one:
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Definition 3 (Laplacian matrix). Define the degree matrix D ∈ Mat(n× n;R) as

Di,j =

{
deg(vi), if i = j

0, otherwise.

The Laplacian matrix is then defined as L = D −A.

As we will see today, there is a close analogy between the Laplacian matrix and the Laplace operator
in vector calculus, so we can (very) roughly think of the Laplacian matrix as a discrete “measure
of the smoothness” of a graph.

We also saw last time that we can define a function f : V → R on G. This function could represent,
say, the temperature at each vertex or the electrical voltage in a circuit with resistance, or simply
a 0/1 indicator for a subset S ⊂ V . f looks like:

f : V → R ≡


f(v1)
f(v2)

...
f(vn)


Note that (f + g)(x) := f(x) + g(x) and (α · f)(x) := α · f(x) for c ∈ R are well-defined operations
on these functions, so they behave like Rn.

We also saw that we can speak of the local variance of f :

Definition 4 (Local variance). The local variance of f is defined as:

E(f) := Eu∼v

[
(f(u)− f(v))2

]
,

where u ∼ v is a probability distribution over the edges.

Roughly speaking, E(f) is “small” if f is “smooth” over the edges E and “large” if f is “rough”
over E.

Finally, we stated and proved the spectral theorem for symmetric matrices:

Theorem 5 (Spectral Theorem). If M ∈ Mat(n×n;R) is an n-by-n, real, symmetric matrix, then
there exist real numbers λ1, . . . , λn and n mutually orthogonal unit vectors ν1, . . . , νn and such that
νi is an eigenvector of M of eigenvalue λi, for each i.

2 Eigenvalues and Optimisation

We’ll start today by talking about symmetric matrices, matrices A ∈ Mat(n × n;R) satisfying
A⊤ = A. These matrices have many nice properties:

1. They have real eigenvalues.

2. They are orthogonally diagonalisable, i.e. there exists an orthogonal matrix Q and a diagonal
matrix Λ such that A = QΛQ⊤. This is called the spectral decomposition of A (indeed it
is a consequence of the spectral theorem). Furthermore, Λ has the eigenvalues of A on its
diagonal, and Q has the corresponding orthonormal eigenvectors of A as its columns.
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One useful property of these symmetric matrices is that they let us define the so-called quadratic
form:

Definition 6 (Quadratic form). Let A ∈ Mat(n×n;R) be a symmetric matrix. Then the quadratic
form of A is defined as:

QA(x) := x⊤Ax, for all x ∈ Rn.

One thing we can immediately note is that every quadratic form is a popularity with terms of
degree at most 2. This is because:

QA(x) = x⊤Ax =

n∑
i=1

n∑
j=1

Ai,jxixj ,

so that if we pick, say, A =

[
1 5
5 4

]
and x =

[
x1
x2

]
, then

QA(x) = x⊤Ax = x21 + 4x22 + 20x1x2.

(If A = L, we can describe the Laplacian quadratic form of a graph with weights wi,j as:

QL(f) = f⊤Lf =
∑

(i,j)∈E

wi,j(f(i)− f(j))2,

where f ∈ RV is a function on the vertices of the graph G. This quadratic form measures the
“smoothness” of f ; it is small if f does not “jump too much” over any edge.)
Now, we can ask the following question: given a symmetric matrix A, what is the maximum value
of QA(x) over all x ∈ Rn with ∥x∥ = 1? More concretely, what is the solution to the optimisation
problem

max
x∈Rn

x⊤Ax subject to ∥x∥2 = 1?

The following is an unconstrained version of this problem:

max
x∈Rn

x ̸=0

x⊤Ax

x⊤x
.

The “scaling-invariant” quantity x⊤Ax
x⊤x

is called the Rayleigh quotient of A at x. This is an important
quantity; it appears in quite a few popular applications:

1. principal component analysis (PCA): Wish to solve maxv∈Rn

v ̸=0

v⊤Σv

v⊤v
, where Σ is the covariance

matrix of a random variable X ∈ Rn—here, we consider the normalised Rayleigh quotient.

2. latent Dirichlet allocation (LDA): Wish to solve maxv∈Rn

v ̸=0

v⊤Sbv

v⊤Swv
, where Sb, Sw ∈ Mat(n ×

n;R) are the between-class and within-class scatter matrices, respectively—here, we consider
the generalised Rayleigh quotient.

3. spectral clustering: Wish to solve minv∈Rn

v ̸=0

v⊤Lv

v⊤Dv
, where L is the Laplacian matrix of a graph

G and D is its degree matrix—here, we again consider the generalised Rayleigh quotient.
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Perhaps the biggest value the Rayleigh quotient has for us is that it lets us find the eigenvalues of
a matrix. Indeed, we have a following min-max characterisation of eigenvalues via the Courant-
Fischer theorem:

Theorem 7 (Courant-Fischer). Let M ∈ Mat(n×n;C) be Hermitian. Then for each 1 ≤ k ≤ n, let
{Sα

k }α∈Ik be the set of all k-dimensional linear subspaces of Cn. Also, enumerate the n eigenvalues
λ1, . . . , λn of M (counting multiplicities) in increasing order, i.e. λ1 ≤ · · · ≤ λn. Then we have

λk
(i)
= min

α∈Ik
max

x∈Sα
k \{0}

x⊤Mx

x⊤x

(ii)
= max

α∈In−k+1

min
x∈Sα

n−k+1\{0}

x⊤Mx

x⊤x
,

where λk is the kth largest eigenvalue of M and S, T are subspaces of Cn.

Proof. Denote an orthonormal basis for the eigenvectors as u1, . . . , un corresponding to eigenvalues
λ1, . . . , λn. We will first prove equation (i), and then (ii):

(i) First let W = span{u1, . . . , un}, so that dim(W ) = n − k + 1. Thus for any k-dimensional
subspace Sα

k , we should have dim(Sα
k ∩W ) ≥ 1; this is because dim(Sα

k +W ) = dim(Sα
k ) +

dim(W )− dim(Sα
k ∩W ), and of course dim(Sα

k +W ) ≤ n.
Now choose x ∈ (Sα

k ∩W ) \ {0}, and note that x =
∑n

j=k⟨x, uj⟩uj and Muj = uj , so that

x⊤Mx

x⊤x
=

⟨Mx, x⟩
∥x∥2

=
⟨
∑n

j=k λj⟨x, uj⟩uj , x⟩
∥x∥2

=

∑n
j=k λj |⟨x, uj⟩|2

∥x∥2
≥ λk

∑n
j=k λj |⟨x, uj⟩|2

∥x∥2

= λk.

Note that we have used the fact that λk ≤ λk+1 ≤ . . . ≤ λn, and ∥x∥2 =
∑n

j=k |⟨x, uj⟩|2.
Thus for any Sα

k ,

sup
x∈Sα

k \{0}

x⊤Mx

x⊤x
≥ λk.

Indeed for any x ∈ Sα
k , we have

sup
x∈Sα

k \{0}

x⊤Mx

x⊤x
= sup

x∈Sα
k ,∥x∥=1

x⊤Mx,

and since {x ∈ Sα
k : ∥x∥ = 1} is compact, the supremum is attained at some x ∈ Sα

k with
∥x∥ = 1. Thus we have

max
x∈Sα

k \{0}

x⊤Mx

x⊤x
= sup

x∈Sα
k \{0}

x⊤Mx

x⊤x
≥ λk.

On the other hand, consider a particular k-dimensional subspace Sα
k = span(u1, . . . , uk), so

that
x⊤Mx

x⊤x
=

∑n
j=k |⟨x, uj⟩|2

∥x∥2
≤ λk.
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Choosing x = uk, we see that the inequality is tight, so that we have

max
x∈Sα

k \{0}

x⊤Mx

x⊤x
= λk.

This also implies that the minimum of maxx∈Sα
k \{0}

x⊤Mx

x⊤x
over all the α ∈ Ik is also attained,

and we conclude that

λk = min
α∈Ik

max
x∈Sα

k \{0}

x⊤Mx

x⊤x
.

(ii) The proof of (ii) is similar to that of (i)—we will omit similar details. Choose again W =
span{u1, . . . , uk}, so that dim(W ) = k. Then for any subspace Sα

n−k+1, we should have
dim(Sα

k ∩W ) ≥ 1.

Next, choose any x ∈ (Sα
n−k+1 ∩W ) \ {0}, such that

x⊤Mx

x⊤x
≤ λk, and therefore

min
x∈Sα

n−k+1\{0}

x⊤Mx

x⊤x
≤ λk.

We again choose a particular Sα
n−k+1 = span(uk+1, . . . , un), so that

min
x∈Sα

n−k+1\{0}

x⊤Mx

x⊤x
= λk.

We can finally say that:

max
α∈In−k+1

min
x∈Sα

n−k+1\{0}

x⊤Mx

x⊤x
= λk,

and we are done.

Thus,

λk
(i)
= min

α∈Ik
max

x∈Sα
k \{0}

x⊤Mx

x⊤x

(ii)
= max

α∈In−k+1

min
x∈Sα

n−k+1\{0}

x⊤Mx

x⊤x
,

as desired. ■

In the above proof, we considered Hermitian matrices, but the theorem is true for real symmetric
matrices as well. The proof is similar; we only need to restrict the subspaces Sα

k to be real subspaces.

We will now discuss a few theorems and corollaries that can be considered as consequences of the
Courant-Fischer theorem. We will start with the following theorem by Weyl, which allows us to
obtain bounds on the kth largest eigenvalue of a matrix M = A+B:

Theorem 8 (Weyl). Let A,B ∈ Mat(n×n;C) be both Hermitian, and let {λj(A)}nj=1, {λj(B)}nj=1

and {λj(M)}nj=1 be the eigenvalues of A, B and M = A + B, respectively, in increasing order.
Then for each 1 ≤ k ≤ n, we have

λk(A) + λ1(B) ≤ λk(M) ≤ λk(A) + λn(B).

By symmetry, we also have

λk(B) + λ1(A) ≤ λk(M) ≤ λk(B) + λn(A).
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Proof. From last time, we know that

λ1(B) ≤ x⊤Bx

x⊤x
≤ λn(B),

for x ̸= 0. Then, by Courant-Fischer’s theorem, we have for any 1 ≤ k ≤ n,

λk(A+B) = min
α∈Ik

max
x∈Sα

k \{0}

x⊤(A+B)x

x⊤x

= min
α∈Ik

max
x∈Sα

k \{0}

x⊤Ax

x⊤x
+ min

α∈Ik
max

x∈Sα
k \{0}

x⊤Bx

x⊤x

≥ min
α∈Ik

max
x∈Sα

k \{0}

x⊤Ax

x⊤x
+ λ1(B)

= λ1(B) + min
α∈Ik

max
x∈Sα

k \{0}

x⊤Ax

x⊤x

= λ1(B) + λk(A).

The exact same argument can be applied for the other inequality to get λk(A)+λn(B) ≥ λk(A+B),
and we are done. ■

The monotonicity corollary follows immediately from Weyl’s theorem:

Corollary 9 (Monotonicity). Adopt all assumptions and notations from the above Weyl’s theorem.
Then for each 1 ≤ k ≤ n, we have λk(A) ≤ λk(M).

Proof. As B is PSD, λj ≥ 0 for all j, and so λk(A) + λ1(B) ≤ λk(M). Thus λk(A) ≤ λk(M). ■

The interlacing corollary is another application of Courant-Fischer. It offers a relationship between
the eigenvalues of a Hermitian matrix A and those of its rank one perturbation. We will not prove
it, but a statement is given below:

Corollary 10 (Interlacing). Adopt all assumptions and notations from the above Weyl’s theorem.
Then for each 1 ≤ k ≤ n, we have

λ1(A) ≤ λ1(M) ≤ λ2(A) ≤ · · · ≤ λk(A) ≤ λk(M) ≤ λk+1(A) ≤ · · · ≤ λn(M) ≤ λn(A).

Problems

1. Show that if A ∈ Mat(n× n; {0, 1}) is the adjacency matrix of a graph, then

λ1 = max
ν ̸=0

ν⊤Aν

ν⊤ν
≥ d,

where d is the average degree of the graph and λ1 is the largest eigenvalue of A.

2. Show that if A ∈ Mat(n× n; {0, 1}) is the adjacency matrix of a graph G, then

λ1 = max
ν ̸=0

ν⊤Aν

ν⊤ν
≤ M(G),

where M(G) is the maximum degree of all the vertices.
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3 Graph Laplacian

Recall that the Laplacian matrix of a (weighted) graph G is defined as L = D − A, where A is its
(weighted) adjacency matrix and D =

∑
j(coli(A))j is its degree matrix. We will now describe the

incidence matrix E of a graph G. It is the matrix whose entities are given by

Ee,v =


−
√
Ae if v is the initial vertex of edge e

+
√
Ae if v is the terminal vertex of edge e

0 otherwise.

As a quick example, consider the following graph:

16

4

1

25

9

We can readily see that the incidence matrix of this graph is:

E =


−1 0 0 0 0
0 −2 0 0 0
1 2 3 5 0
0 0 −3 0 −4
0 0 0 −5 4

 .

This matrix1 offers us an alternative definition for L: L = E E ⊤.

Remark 11. The definition L = D − A gives Lij = Dij − Aij = Diiδij − Aij, where δij is the
Kronecker delta on the vertices. Recalling thar Dii =

∑n
j=1Aij, we can see that Lij =

∑n
j=1Aijδij−

Aij = deg(vi)δij −Aij.

Now let’s try to motivate why we call L a Laplacian. Consider the following graph, and assume
you applied heat to vertex 1 and that all of the edges can conduct heat:

5

3

6

7

2

8

1

4

1We didn’t discuss this, but we can reconstruct G = (V,E) from E in time O(|V ||E|), regardless of whether G is
connected or not.
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Newton’s law of cooling states that the heat gets transferred like dT/dt = −k(T − Tenv), where
T is the temperature of the vertex and k is some constant. So, in the example above, we have
dT1/dt = k(T4−T1)+k(T2−T1)+k(T8−T1), and so on. We can speak about this more generally:

dTi

dt
= −k

∑
j

Aji(Ti − Tj) = −k

∑
j

AijTi −
∑
j

AijTj


= −k

∑
j

Aij

∑
ℓ

δℓiTℓ −
∑
j

AijTj

 = −k

∑
ℓ

∑
j

AijδℓiTℓ −
∑
ℓ

AiℓTℓ


= −k

∑
ℓ

∑
j

Aijδℓi −Aiℓ

Tℓ

 = −k
∑
ℓ

LiℓTℓ

= −kLT

We can “think” of this expression as a discrete version of the heat equation dT/dt = −k∇2T ,
where L is the discrete version of the Laplace operator ∇2—hence, the Laplacian. We can also
think about how the Laplacian characterises the smoothness of a function on a graph via the same
analogy.

We’ll quickly discuss some examples. Consider the path graph

1

2

3

4

which has

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


We can find that the eigenbasis a and spectrum b of L are

a =


−0.5 −0.6538 0.5 −0.2706
−0.5 0.2706 −0.5 0.6538
−0.5 −0.2706 0.5 −0.6538
−0.5 −0.6538 0.5 0.2706

 , b =


0 0 0 0
0 0.5838 0 0
0 0 2 0
0 0 0 3.4142

 .

Observe that a⊤a = I and a⊤La = b.

We consider now the complete graph Kn on n vertices. We can find (either by using L = D−A or
by using the incidence matrix) that

LKn =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

 = nI− 11⊤,
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where 1 is the all-ones vector. We can immediately see that L1 = 0, and so 0 is an eigenvalue
of LKn with corresponding eigenvector ν1 = 1. We can compute the spectrum of the graph by
symmetry (left as an exercise). Regardless, the following bit from linear algebra can help us find
other eigenvectors given ν1:

Theorem 12. For a symmetric matrix M with eigenvalues λi ̸= λj, Eλi
⊥ Eλj

. Furthermore, in
the case of just two distinct eigenvalues λ1 and λ2, we have Eλ1 ⊕ Eλ2 = V ⊆ Rn.

Proof. The first part is straightforward: assume νi and νj are two eigenvectors of M corresponding
to λi and λj . Then ν⊤j Mνi = λiν

⊤
j νi = λjν

⊤
j νi, and so (λi − λj)ν

⊤
j νi = 0, which implies ν⊤j νi = 0

(since λi ̸= λj). Thus Eλi
⊥ Eλj

.

We’ll prove a general version of the second part. let ν1, . . . , νn be n linearly independent eigenvec-
tors; for each i ∈ {1, 2, . . . , n}, let λi ∈ R be such that Aνi = λiνi. We can assume without loss of
generality that λ1 ⩽ λ2 ⩽ · · · ⩽ λn. Suppose that λ1 = λ2 = · · · = λk, for some k ∈ {1, 2, . . . , n}.
Then the eigenspace Eλ1 associated with λ1 is

⊕k
i=1Rνi. And if λk+1 = λk+2 = · · · = λl for some

l ∈ {k + 1, · · · , n}, Eλk+1
=

⊕l
i=k+1Rνi. And so on. So, if k1, . . . , km ∈ {1, 2, . . . , n} are such that

λk1 < · · · < λkm and that {λk1 , . . . , λkm} = {λ1, . . . , λn}, then

Rn =
m⊕
j=1

Eλj
,

and each partial sum is a subspace of Rn. ■

This theorem is useful for constructing the eigenvectors of L given ν1: each νℓ is an eigenvector so
long as it is orthogonal to LKn for some n. Thus, we can construct ν2, . . . , νn by taking the n− 1
vectors 

1
−1
0
...
0

 , . . . ,


1
0
...
0
−1

 .

We conclude our discussion for today with a theorem relating the eigenvalues of its L to the
components of any graph G.

Theorem 13. If the unweighted graph G has n vertices and λ is an eigenvalue of its Laplacian
LG, then 0 ≤ λ ≤ n. Furthermore, the multiplicity of λ = 0 is equal to the number of connected
components of G, and the multiplicity of λ = n is one less than the number of connected components
of G2.

Proof. Suppose ν has ∥ν∥ =
√

⟨ν, ν⟩ = 1 and LGν = λν. Then since ν · ν = 1, we have

λ = (λν) · ν = (Lν) · ν = (E E ν) · ν
= ν⊤(E ⊤)⊤E ⊤ν = (E ⊤ν)⊤(E ⊤ν)

=
∥∥∥E ⊤ν

∥∥∥2 ≥ 0,

2This is the complement of G, specified by deleting all of G’s edges
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where E is the incidence matrix of G. Thus the spectrum of LG is non-negative. Let v1, . . . , vk
be the vertices of a connected component of G. Then the sum of the corresponding sums of E is
0 (verify this for yourself) and any k − 1 of these sums are linearly independent. It follows that
the nullity of E (and hence L = E E ⊤) is equal to the number of components of G. For the second
inequality, we use the fact that if G has n vertices, then LG+LG = LKn = nI−11⊤. Consider now
some ν∗ = (1, . . . , 1), so that LGν

∗ = LGν
∗ = LKnν

∗ = 0. Suppose LGν = λν for some ν ⊥ ν∗.
Since the spectrum of Kn is [0, n, . . . , n], we find that LKnν = nν. Furthermore,

LGν = (LKn − LG) ν = nν − λν = (n− λ)ν.

Hence ν is an eigenvector for LG with eigenvalue n − λ. Therefore n − λ ≥ 0 =⇒ n ≥ λ. So
0 ≤ λ ≤ n.

By the calculation above, if [λ1, . . . , λn] is the spectrum of LG then [n − λ1, . . . , n − λn] is the
spectrum of LG. Thus the multiplicity of λ = n in LG is equal to the multiplicity of n − λ = 0
which indicates the number of connected components in G. On the other hand, the multiplicity
of λ = 0 is the same as the multiplicity of n − λ = n which indicates the number of connected
components in G. ■

Corollary 14. If G has n vertices and λ = n is an eigenvalue of LG, then G is connected.

Proof. If G was not connected then G would have more than one connected component and so LG

would be connected hence the ν satisfying LGν = nν and ν∗ = (1, . . . , 1) would be null to LG and
hence ν ⊥ ν∗, which contradicts the fact that ν∗ is an eigenvector of LG. ■

Problems

1. Show that the Laplacian is always positive semidefinite.

2. Show that the nonzero eigenvalues of Kn are n (with algebraic multiplicity n−1) and 0 (with
algebraic multiplicity 1).

3. Show that the Laplacian can be written as L = E E ⊤.

References

[HJ12] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2012.

[Fiedler72] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(2):298–305, 1972.

[Chung97] F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[Abreu06] N. M. M. de Abreu. Old and new results on algebraic connectivity of graphs. Federal
University of Rio de Janeiro, 2006.

[AM85] W. Anderson and T. Morley. Eigenvalues of the Laplacian of a graph. Linear and
Multilinear Algebra, 18(2):141–145, 1985.

10


	Recap
	Eigenvalues and Optimisation
	Graph Laplacian

