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Preliminaries

Sometimes, you are given a graph G = (V, E), but you only want
one way to connect its nodes. We can derive a subgraph of G
called a spanning tree.

Figure: A spanning tree of a 4x4 grid graph.



The Laplacian Matrix

Recall the matrix L from previous lectures whereby

Dij =
{

deg(vi), i = j

0, otherwise
⇒ L = D − A

Where A is the adjacency matrix of the graph. We can think of
the Laplacian as a measure of ”smoothness” over the graph (recall
local variance from earlier lectures to highlight differences in
smoothness).



Determinants

There are several ways to compute the determinants of n × n
matrices, but for now we’ll focus on the Leibniz Formula which
expresses the elements of a square matrix in terms of the
permutations of the matrix elements (using permutation groups
from abstract algebra). Suppose A is a n × n square matrix, where
A(i, j) is an entry (this is the notation Spelman uses), then the
determinant of A is

det(A) =
∑

π∈Sn

(sgn(π)
n∏

i=1
A(i, π(i)))

This formula isn’t particularly useful for actually computing
determinants. It’s used here for a better theoretic understanding.



Characteristic Polynomials

From any classic linear algebra textbook, the characteristic
polynomial of a matrix A is det(xI − A). You can compute the
polynomial by using any determinant formula. For our purposes,
the characteristic polynomial is defined as:

n∑
k=0

xn−k(−1)kσk(A)

In which σk(A) is the kth elementary symmetric function (an
invariant polynomial) of the eigenvalues of A, counted with
algebraic multiplicity.

σk(A) =
∑

|S|=k

∏
i∈S

λi

Where, S is the set of indexes {1, 2, ..., n}.



Further notes about determinants and characteristic
polynomials

Elementary symmetric functions en are defined as follows without
loss of generality:

e1(x1, x2.x3) = x1 + x2 + x3 (1)
e2(x1, x2.x3) = x1x2 + x1x3 + x2x3

e3(x1, x2, x3) = x1x2x3

and so on and so forth. These elementary symmetric functions
denote the k-wise products of eigenvalues of A. As such, σ1(A) is
its trace and σn(A) is its determinant (by Leibniz). Also recall that
determinants are multiplicative: det(A)det(B) = det(AB).



What are we building towards?

Spelman’s SAGT book as well as a lot of papers on spectral graph
theory assume a great deal of mathematical background. Heck,
just trying to interpret Leibniz’s determinant formula requires
knowledge of the theory of symmetric groups and some functional
analysis on top of the already mathematically dense linear algebra.
The purpose of all the preliminaries is to build up towards to the
central result in SAGT that relates determinants with the number
of spanning trees of a given graph.



Kirchoff’s Matrix-Tree Theorem

Theorem (Kirchoff). Let G = (V, E, w) be a connected,
weighted graph. Then,

σn−1(LG) = n
∑
T

∏
e∈T

we

This is a modified version of the standard theorem which I will
discuss later. Let’s focusing on what’s actually happening here.

1. LG is the Laplacian Matrix defined earlier of the graph G.
2. σn−1 is the symmetric n − 1th elementary function of the

eigenvalues of the Laplacian Matrix.
3. The theorem essentially states that the function is equal to n

times the sum over the product of the total weight of each
spanning tree.



Proof.

Lemma. Let G = (V, E, w) be a weighted tree.

σn−1(LG) = n
∏
e∈E

we

From the textbook, we know σn−1(LG) =
∑

a∈V det(LG(Sa, Sa)).
In simpler terms, the (n − 1)th elementary symmetric functions of
all the eigenvalues of LG is the sum of the determinants of the
submatrices of the Laplacian for each vertex (very similar to the
Cofactor Expansion). The rest of the proof is quite complicated
and long (pg. 112-113 of SAGT).



Proof.

However, the general gist of it is:
▶ LG = UTWU and B = W

1
2 U.

▶ U is the signed edge-vertex adjacency matrix and W is the
diagonal matrix of edge weights.

▶ We show that σn−1(LG) = σn−1(BTB) implies that
σn−1(LG) =

∑
|S|=n−1,S⊂E σn−1(LGS

).
We are basically showing that the sum of the determinants of all
principal cofactors of LG can be expressed in terms of B and BT ,
decomposing the function into a sum of determinants of their
submatrices.



Understanding

It should be noted that Spelman’s proof in the book places a heavy
reliance on dense notation. The proof of this theorem, in my
opinion, is stated in a much cleaner way on Wikipedia (Article No.
”Kirchoff’s Theorem”). This proof utilizes the identity proven in
the Cauchy-Binet formula which you might’ve seen in linear
algebra. It’s essentially the same logic as Spelman’s but easier to
comprehend.



Kirchoff’s Theorem Simplified

What if we just want to count the number of spanning trees in a
given connected graph? We can use a more simplified version of
the Matrix Three Theorem. For a given connected graph G with n
vertices, let λ1, λ2, ..., λn−1 be the non-zero eigenvalues of its
Laplacian matrix. Then the number of spanning trees is

t(G) = 1
n

λ1, λ2, ..., λn−1

This is just the previous theorem, but assuming the graph is
unweighted. We divide by n because we are essentially taking the
cofactor determinant n times in the initial summation.



Example (from Wikipedia)

Figure: A diamond graph G and its corresponding trees.



Example (from Wikipedia)

The Laplacian Matrix L for this graph is
2 −1 −1 0

−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2


Take any cofactor determinant: C1,1 = 8. This is the number of
spanning trees of G. Every cofactor determinant will evaluate to 8.



Leverage Scores

This is the last topic. The leverage score of a given edge is written
as le and is defined to be weReff (e) or the weight of the edge
times the effective resistence between its endpoints. Recall from
last time that

Reff = (δa − δb)TL+
G(δa − δb)

Details can be seen on last week’s notes of what this formally
means. If we choose a spanning tree T with a probability
proportional to the product of its edge weights, then for every edge
e

Pr[e ∈ T ] = le

The probability that e is an edge in T is exactly its leverage score.


