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A brief overview

◮ Expanders are a special type of graph we’d like to characterize. To
do this, we’ll give qualitative examples and then define a notion of
expansion

◮ We can formalize what it means for graphs to be expanders in a few
ways; one such way is using the graph’s conductance φ(G)

◮ Cheeger’s inequality connects the second smallest eigenvalue of the
graph Laplacian with φ(G)! We’ll build up to it:

λ2(NG)

2
≤ φ(G) ≤


2λ2(NG)



Expanders, qualitatively

An expander graph is a graph that is

1. Sparse: Has a small number of edges

2. Well-connected: Many paths from one node to another
◮ Every subset of vertices that is not too large has a large boundary
◮ Need to cut a lot of edges to ’cut’ graph into 2 disconnected parts



Figure: Not an expander; 1) has few edges satisfied, but 2) not well-connected,
since cutting middle edge breaks it in half



Figure: Petersen graph (type of expander called Ramanujan graph)



What we need to know

◮ To make sense of Cheeger’s inequality, we need to briefly recall the
Laplacian L and normalized Laplacian N

◮ Then we will state the 2 characterizations of expanders connected by
Cheeger’s inequality:

1. Spectral: Using the kth eigenvalue of L and N
2. Vertex: Using conductance



Conductance is one way to formalize the idea of expanders

Let G = (V,E) be an undirected, unweighted graph where S ⊆ V is
some set of nodes

Def (Conductance of S) φ(S) := w(∂(S))
min{d(S),d(V \S)} where

◮ ∂(S) is the boundary of S (edges, the ones ’touching’ S)

◮ w(∂(S)) is the sum of the edges’ weights

◮ d(S) is the sum of degrees of vertices in S

→ Basically, measures how connected S is, scaled down by the degrees of
nodes in S. This looks a lot like the 2 criteria!

One interpretation: φ(S) = probability of escaping S in a random walk



Conductance is one way to formalize the idea of expanders

Conductance of a graph is just the minimum conductance amongst all
S ⊂ V :

φ(G) = min
S⊂V

φ(S)

In the same vein, can interpret φ(G) as the probability of escaping the
most poorly connected set in a random walk

Computing conductance is NP-hard

Example: φ(G) > 0 iff G is connected, bigger φ(G) means more
well-connected, lower edge degree



Conductance is one way to formalize the idea of expanders

Now we can define expanders:

Say that G is a ϕ-expander iff φ(G) ≥ ϕ

Now ready to connect this to the graph Laplacian!



Recall the normalized Laplacian N

◮ Given a graph, enumerate the vertices {1, . . . , n}
◮ Its graph Laplacian is L = D −A, where

◮ D is the diffusion matrix
◮ A is the adjacency matrix

◮ L is a real symmetric matrix, so by the spectral theorem it has n
real eigenvalues

◮ Also useful to construct the normalized Laplacian N , which scales L
down by degree in a way that preserves symmetry,
N = D−1/2LD−1/2



Eigenvalues of N , specifically λ2

◮ Recall the enumeration of eigenvalues from lecture 2, where λk is
the kth smallest eigenvalue

◮ Eigenvalues of N :
◮ λ1 = 0 and λn ≤ 2
◮ λk = 0 iff G has at least k connected components (means that

λ1 = 0)
◮ Also means that λ2 (also called the Fiedler value/algebraic

connectivity of G) is > 0 iff the graph connected

◮ We can compute λ2 efficiently!



Seems like λ2 can characterize expander properties

Here is Cheeger’s inequality again:

λ2(NG)

2
≤ φ(G) ≤


2λ2(NG)

Kind of know what it means now:
If G is an ϕ-expander, we have a bound on λ2(NG)

→ To test whether G is an ϕ-expander, we can compute λ2(NG) to get
a range for φ(G), which is good because computing φ(G) is NP-hard but
computing λ2(NG) isn’t

→ Big λ2(NG) means more expander-like



Overview of Cheeger’s inequality proof

Direction 1: λ2(NG)
2 ≤ φ(G)

(Low conductance =⇒ small eigenvalue)

◮ Let S ⊆ V be the subset where φ(S) = φ(G)

◮ For every S, its φ(S) = Rayleigh quotient of 1S whose v-th
coordinate is 1 iff v ∈ S, RL(1S), so RL(1S) ≤ φ(G)

◮ Variational characterization of eigenvalues tells us that the second

eigenvalue is the minimum value of xTNGx
xT x

for all x ⊥ v1, the first
eigenvector

◮ This means that λ2 ≤ 2φ(G) as desired if all vectors in the
2-dimensional space X of linear combinations of 1S , 1V \S have
Rayleigh quotients at most 2φ(G)

◮ This will follow from NG being positive semidefinite



Overview of Cheeger’s inequality proof

Direction 2: φ(G) ≤
√
2λ2

(Small eigenvalue =⇒ low conductance)

◮ Connect conductance to sparse cuts (mentioned in previous lecture)
to show that given any x ⊥ v1, we can find a cut S in G s.t.

φ(S) ≤

2xTLGx

xTDx

◮ Fiedler’s algorithm gives a way to find such an S



Examples that show Cheeger’s inequality is tight

Consider the cycle with 4n vertices. Then φ(G) ≤
√
2λ2 is tight up to a

constant, since λ2 and φ(G) are both Θ(1/n2)



Examples that show Cheeger’s inequality is tight

Figure: Dumbbell graphs are complete graphs connected by a single edge,
similar to the example shown in the beginning

Consider the dumbbell graph with 2n vertices. Using the Courant-Fischer
characterization for λ2 from the 2nd seminar, we can show that
λ2 ≥ c/n2 for some c > 0. Using random walk properties, we can show

that φ(G) is Θ(1/n2) so λ2(NG)
2 ≤ φ(G) is tight


